A 3D Keller-Segel-Navier-Stokes system involving subquadratic logistic degradation
讲座名称:A 3D Keller-Segel-Navier-Stokes system involving subquadratic logistic degradation
讲座人:向昭银 教授
讲座时间:11月12日10:00-11:00
地点:腾讯会议853-495-989
讲座人介绍:
向昭银,电子科技大学数学科学学院教授、博士生导师。2006年博士研究生毕业于四川大学。从事偏微分方程的研究,在CPDE、CVPDE、IMRN、JFA、Math Z等国际知名期刊上发表学术论文70余篇,作为负责人主持多项国家自然科学基金项目。入选四川省杰出青年学术技术带头人资助计划、四川省学术和技术带头人后备人选等,曾获四川省科学技术进步奖(自然科学类)二等奖,四川省数学会基础数学奖一等奖等奖项。
讲座内容:
In this talk, we consider a Keller-Segel-Navier-Stokes system involving subquadratic logistic degradation in a three-dimensional smoothly bounded domain along with reasonably mild initial conditions and no- flux/no-flux/Dirichlet boundary conditions for cell population/ chemical/fluid.
The purpose of the present talk is to firstly show the generalized solvability for the model under some subquadratic logistic exponent restriction, which indicates that persistent Dirac-type singularities can be ruled out, and to secondly exhibit the eventual smoothness of these solutions under the stronger restriction whenever linear growth coefficient of population is not too large. These results especially extend the precedent works due to Winkler (J. Funct. Anal. 276 (2019): 1339-1401; Comm. Math. Phys. 367 (2022): 439-489.), where, among other things, the corresponding studies focus on the case of quadratic degradation. This is a joint work with Dr Yu TIAN.
主办单位:数学与统计学院
上一条:量子相干
下一条:钱学森科技报国的圆梦历程