Boundary-layer problem for the Keller-Segel model with physical boundary conditions
讲座名称:Boundary-layer problem for the Keller-Segel model with physical boundary conditions
讲座人:王治安 教授
讲座时间:10月24日10:00-12:00
地点:腾讯会议464-235-970 会议密码:1024
讲座人介绍:
王治安, 香港理工大学应用数学系教授,华中师大本科硕士, 加拿大艾伯塔大学应用数学博士,美国明尼苏达大学应用数学所博士后。主要从事与生物数学相关的偏微分方程建模及分析研究。目前已在Proc. London Math. Soc 、 J. London Math. Soc. 、 J. Math. Biol.、JMPA、CPDE、SIAM J. Math. Anal.、SIAM J. Appl. Math. 、Indiana U. Math. J. 等杂志上发表学术论文100多篇。现担任杂志 J. Mathematical Biology, DCDS-B, MBE等杂志编委。曾获香港数学会青年学者奖。
讲座内容:
In this talk, we shall discuss the boundary layer problem of the singular Keller-Segel model with physical boundary conditions in any dimensions. First, we obtain the existence and uniqueness of boundary-layer solution to the steady-state problem and identify the boundary-layer profile and thickness near the boundary. Then we find the asymptotic expansion of boundary-layer profile in terms of the radius for the radially symmetric domain, which can assert how the boundary curvature affects the boundary-layer thickness. Finally, we establish the nonlinear stability of the unique boundary-layer steady state solution with exponential convergence rate for the radially symmetric domain.
主办单位:数学与统计学院
上一条:OH!遇见未知的自己