On an integrable multi-component Camassa-Holm system arising from Mobius geometry
讲座名称:On an integrable multi-component Camassa-Holm system arising from Mobius geometry
讲座人:康静 教授
讲座时间:9月18日8:30-11:30
地点:腾讯会议 194409278 密码: 123456
讲座人介绍:
西北大学数学学院教授、博士生导师。主要研究方向为数学物理和非线性可积系统。具体的研究课题包括:对称和李群在微分方程中的应用、非线性可积系统可积性及孤立波解、Liouville相关性理论及其应用。主持多项国家自然科学基金,一项陕西省自然科学基金杰出青年项目,入选“2017年度陕西省高校青年杰出人才支持计划”。
讲座内容:
In this talk, we mainly study the geometric background, integrability and peaked solutions of a (1+n)-component Camassa-Holm (CH) system and some related multi-component integrable systems. Firstly, we show this system arises from the invariant curve flows in the Mobius geometry and serves as the dual integrable counterpart of a geometrical (1+n)-component KdV system in the sense of tri-Hamiltonian duality. Moreover, we obtain an integrable two-component modified CH system using a generalized Miura transformation. Finally, we provide a necessary condition, under which the dual integrable systems can inherit the Backlund correspondence from the original ones.
主办单位:数学与统计学院